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Abstract—To accurately determine the surface resistance of Superconducting films
high-temperature superconducting films, multifrequency mea- Lateral (Cu) wall
surements ofSs;, S11, and S-2 and sophisticated data processing
are required. As a result, surface resistance measurements and
calculations for varying temperatures are very time consuming.
In this paper, we introduce a simplified method for calculations
of the unloaded Q (Q.) factor, which require measurements
of S11 and S»» at the lowest temperature only. For all other
temperatures, only S2; measurements are needed. The method
has been shown to give sufficiently accurat€,, values and, hence,
the surface resistance of superconducting samples, as compared to
results obtained from S>4, S11, and S22 measurements using the
transmission-mode(Q factor technigue. The presented method has
been tested under different coupling coefficients and frequencies.

Sapphire

Index Terms—DBielectric resonator, high-temperature super-
conductors, surface resistance.

Fig. 1. Schematic diagram of the sapphire dielectric resonator.
|. INTRODUCTION
RYOGENIC electronics is a fast growing branch oftructure cons_,ists of a dielectric rod sandwiche_d betyveen tyvo
modern electronics especially since the discovery gfPerconducting samples enclosed by a metallic cavity, which
high-temperature superconductors (HTSs) that allowed f&rsc_hematmally presented in Fig. 1. When a low-loss dlelect_nc
significant reduction of losses and noise figures in filters arf@d IS @mployed, the total loss of the resonator depends mainly
microwave oscillators. The quality of HTS films at microwav@" the loss in the superconducting material. Surface resistance
frequencies is assessed on the basis of surface resistancg' 5fTS films, i.e.,fiss, is found from the loss equation [7]
the material. It is well known the surface resistance cannot be
measur_ed directly and is c_al_culated fr_om the loss equation of a Res = Ag < 1 Rsyv pe tan 6) )
resonating structure containing HTS films under test. Qo Awm
Different types of microwave resonators have been employed
for measurements of surface resistance of HTSs such awlere(q, is the unloaded factor, As and A, are the geo-
metallic cavity [1], microstrip [2], parallel plate [3], confocalmetric factors of the superconducting endwalls and the lateral
[4], and dielectric rod resonators [5]. Dielectric resonators acepper wall,Zsys is the surface resistance of copper,is the
known to provide high accuracy and sensitivity in wide rangenergy filling factor, andan ¢ is the loss tangent of the dielec-
of temperatures and frequencies [6]. There are two typestat material used (typically sapphire). The unloadggifactor
dielectric resonators used for HTS microwave characterizatiaacalculated from measuretiparameters of the resonator. The
Hakki—Coleman (H-C) and open-ended resonators. The HH=C type of resonator working in the transmission mode is
currently under consideration as a standard test fixture for mi-
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case, measurements 8f; only for the transmission mode (or
S1: for the reflection mode) are sufficient. However, it may not
be practical to perform measurements at very weak coupling.
For stronger coupling, providing the coupling at ports 1 and 2

=) Im(S,,)

a1
/N -
| \ S21res 0 Y Re(s,)
of the resonator are the same, thie factor can be calculated W } 21
using the formula [8] | ; Relsy)
\m . /,/' ,,\\\‘ o
Qr o B
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In practice, it is difficult to obtain equal coupling on both m".e 0.001 g
ports_ and, hence,_the_ accuracy of_ (2) may not be sufficient for E e 9& ob. &
precise characterization of HTS films. Hence, to calculate the N E po01bt
Q, fa_ctor accurately under arbitrary coupling, the following T Re(S,,) o002l B
equation [9] should be used: , j*"]
-0.003
- -0.004  -0.002 0
e Re(S
Qo= Qr(l+ky + k2) (3) oSz

(© (d)
wherek; andk; are coupling coefficients to ports 1 and 2 of thé&ig. 2. $=. Q circle. (a) Ideal. (b) With phase shift. (c) With crosstalk. (d) As
resonator under test. measured.

To use (3) for accurate calculations of the factor, mul-
tifrequency measurements 8%;, S1;, andS,, parameters are  The following relationships are used for thecircles fitting
needed to determine the load@d and coupling coefficients,  of transmission-mode dielectric resonators with > 100 in
andk,. In order to remove effects of uncalibrated transmissidhe TMQF technique [10], [11]:
lines, coupling, noise, and crosstalk from measwfqehrame- VR Yo Yo

ters sets, special data processing should be performed on ed&gh(w) = (4)

set as in the transmission-mo@eactor technique (TMQF) de- Go(1+ k1 + ko) [1 + 5207, M}

veloped at the James Cook University, Townsville, Qld., Aus- wr

tralia [10], [11]. , (w—wr) 2R.Y 2,
Measurements of three multifrequengyparameter data sets Q1 Sppa2 W +95ppat Go(14ky + ko)

around the resonance for characterization of HTS films at se¥pp(w) = (@ —wr)

eral temperatures and power levels may require a very long time. JQr2 RV |

In this paper, we have introduced a simplified and novel method v )

for calculations of the coupling coefficients of dielectric res-

onators containing superconducting films. This method reduGgfiere 7, is the conductance of an ideal dielectric resonator,
the required time for measurement and data processing signf-is the characteristic impedance of measurement syatem,
icantly, but provides sufficiently accurate measurements of thdy.,,, are external admittances including the coupling losses
unloaded?, factor. The presented method is a modification gdnd reactances is the port number (1 or 2), angl,,q is the

the TMQF technique allowing for reduction in the number ofietuneds-parameter value.

measurements taken and shortening the time of measurementsquations (4) and (5) are of the fractional linear fofugt +

without compromising accuracy. a2)/(azt+1), wheret is the normalized variable equal2¢(w —
wr)/Awy,) andwy, is the loaded resonant frequency. Hence, the
Il. TMQF complex constants;, as, andag can be obtained from th@

circle fitting procedure to th&,; data set, and the loadé&g;,

The most accurate values of the loaded factor and the factor is found adm|as).

coupling coefficientd:; andk, are obtained by fitting multifre- The coupling coefficients:, and k» are expressed in the

QUencySa, 511, andSs; measured data to acircle on the Smm}MQF technique as the sum of lossless and lossy terms
chart plane [11]. Thé&,;-parameter of an ideal resonator mea; .o k.. The termsk; and k. are derived from the
sured around the resonance form circles in the complex p|a”%f§metérsd1 and do of the 5‘11 and S22 @ circles and the

shown in Fig. 2(a). However, practical measurements are oftga eters;: andy of the associated coupling-loss circles
distorted from the ideal shape, rotated, and shifted from the

origin [see Fig. 2(b)—(d)]. A procedure that involves fitting of kyy = z (6a)
an ideal@ circle to the measured data and a phase correction is 9 [1 _ <£ + g)}

often needed to remove effects of noise, uncalibrated measure- di  dy

ment cables, connectors, coupling structures, crosstalk between b - 2 1) oo 6b
the coupling loops, and impedance mismatch. = \4 Li (6b)
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that requires measurements of coupling coefficients based on
S11- and Ss»-parameters at one temperature only is presented
in Section 1.

lll. SIMPLIFIED METHOD FOR(), FACTOR CALCULATIONS AT
VARYING TEMPERATURES

As mentioned earlier, the unloadéy, factor of a dielectric
resonator can be calculated using (3). Let us consider two mea-
surements of a dielectric resonator at two different temperatures
T4 and7g. At temperaturél’s, the unloaded), 4 factor is

Qoa = Qra(l+kiq+koa) )
Fig. 3. S1: and the coupling-loss circles on the Smith chart.
and the coupling coefficientls, 4 andk. 4 are described as

o y
e v I e oy = 204 10
- d_l - d_2 t QextlA ( a)
2 ~ Qoa
kQL - <d_2 B 1) in (7b) kQA B QextQA ’ (1Ob)

whered; is a diameter of the port—1 coupling-loss cirafg,is At temperaturél s, the unloaded) 5 factor is
a diameter of the port—2 coupling-loss circleis the diameter

of the S1; @ circle, andy is the diameter of th&,, @ circle. Qos = Qra(1+kip + ko) (11
The circle diameters in the TMQF technique are found from the
constantsiy, as, andag and coupling coefficients can be described as
. . . ay _ QOB
diameter ofQ circle = |a; — — (8a) kig = (12a)
as QextlB
and kap = QQOSB' (12b)
i 2
diameter of loss circlgo; , = M (8b) Hence, the unloade@ factors at temperaturés; andZ’s can
1 — |Sppal cos ¢ be presented as

whereg¢ is the angle between the vectdg,a O and.Sppa Sppe; 1 1
Sppd is the detuned point, ansl,,. represents the center of the Qoa =Qra [1 + Qoa <Q + 0 )} (13)
Q circle, as illustrated in Fig. 3 for thé;; -parameter. Poins, extld  Texizd

represents the value of,, at resonance. Qo =Qrs {1 + Qos < ! + ! )} . (14)
The phase of measure; and.S,, data sets of a dielectric Qext1B Qext2B

resonator loaded with superconducting films often needs to E

. . : . uation (13) can be rewritten as
corrected before computing the circle diameters, especially |§ (13)

there are long lengths of uncalibrated cables. In the TMQF tech- Qoa
nique, wide-band measurements are used to estimate the rate Ora 1 1 1
of change of the phase with frequency, and $hg-parameters QOA = Owriin + Ourion (15)

data sets are corrected before applying the fitting procedures.

The S, -parameter measurements are much less sensitive toileve assume that the extern@l factors(Q..) at both tem-

lays introduced by uncalibrated cables. peraturesTy and T are the sameQui4 = Qexiip and
To use the TMQF technique for accurate characterization @f, ., 4 = Qexi25.

HTS films in a wide range of temperatures (e.g., from 5 to 86 K By substituting (15) into (14), the following expressions for

spaced at 0.5 K) and RF power levels, measurements of thige unloaded), 5 factor at temperatur&y are obtained:

S-parameters for over 100 temperatures need to be taken around

the resonance, each set consisting of 1601 points. For our mea- _ QLB

. Qop = (16)
surement system, the total measurement time for one temper- 1 Qre [ Qoa 1
ature is approximately 40 min, and 250-kB memory is needed Qoa \Qra

for storage of logged data. Processingef, S11, andSss data

sets, including fitting to the) circles and phase correction for®"
one temperature takes approximately 10 min on a Plll computer. QLB
If the number of necessary parameters to be measured is re- Qop = Qrs
duced, this results in a significant savings of time. A method Qoa

(17)

(k14 + k2a)
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Fig. 4. Reference plane of the resonator and positions of coupling loops. Fig. 5. Measurement system.

Equations (16) or (17) can be used for a set tdfmperatures to 0.25 T g ; ; T !
obtain a characteristic @; versus temperature. e u
The assumption of the externglfactors being constant with 5 5 : 5 :‘
temperature varying can be considered correct if parameters of
the external circuitry do not vary with the temperature of the
resonator. This requires the reference plane of the coupling to
be defined at the external terminals of a cryostat in which the
resonator is housed (Fig. 4). This implies that cables inside the
cryostat are considered as a part of the resonator and, hence, a
phase correction procedure needs to be used to eliminate their
influence from measured parameters, as in [11] and [12].

0.20

Coupling Coefficient

0.05

IV. VERIFICATION OF THE PROPOSEDQ)q 0.00 Lo i
MEASUREMENT METHOD 20 30 40 50 60 70 80 90

To verify the presented method for simplified (but accurate) Temperature (K)

measurements of surface resistance of HTSs a.t varylng te_mrll-‘?r._G. Coupling coefficients at port (&, ) and port 2(k-) as a function of
atures, we performed measurements of sapphire dielectric k@&perature at 10 GHz for sample #1.

onators with high-quality YBa&Cu;O;_s (YBCO) thin films.

The unloaded? factors obtained using the full TMQF tech- o ) o

nique and the simplified method have been compared and pllré;he S|mpllf|ed method, the_couplmg coefficients were calcu-
sented in Section V. In order to be certain that the developi€d using the TMQF technique frof; and.S», data at the
technique is valid under all measurement conditions, we ha@¥/est temperatur€Z’y) and the@, factor was computed on

used two different resonators (working at frequencies of 10 aHif Pasis of (17) as
25 GHz), i.e., four pairs of different YBCO samples and two

. . T
values of couplings for each resonator in the tests. The measure- Qo[T] = ?L[ ] (29)
ment system we used for the verification is illustrated in Fig. 5. 1- QL] (k1a + k2a)
In the verification process, we measurég -, Si:-, and 04

Saes-parameters of the dielectric resonator at all temperatur.?ﬁ
and applied the TMQF technique to remove effects of noisg

. . same way; namely, frori>; data sets measured at every tem-
uncalibrated measurement cables, connectors, coupling struc-

erature and applying th@ circle fit of the TMQF technique.
tures, and crosstalk from the measured data sets. We then ;% : .
two techniques, i.e., the TMQF technique and the “simplifie ﬁ@e thel), factor was calculated using either (18) or (19), the

method, to find coupling coefficients, a loadéx, factor, and average surface resistance of the YBCO thin films was calcu-

an unloaded?, factor. In the full TMQF technique, coupling lated using (1).
coefficientsk; and &k, were calculated from multifrequency
measurements f;; andS,, at every temperature and the,

factor was found according to (3) as A. Verification Using 10-GHz Resonator

e loaded?,[T] factor in both methods was obtained in the

V. RESULTS AND DISCUSSION

The first verification test was based on a sapphire dielec-
Qo[T) = Qr[T1(1 + k1 [T] + k2[T]). (18) tric resonator working at 10 GHz. The cavity of the resonator
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Fig. 8. Surface resistance of YBCO thin film (sample #1) using the TMQF
and simplified TMQF methods as a function of temperature at 10 GHz. Fig. 10. Unloaded), factor using the TMQF and simplified TMQF methods
as a function of temperature at 10 GHz for sample #2.

was made of copper, and for endwalls, we used YBCO thin
films. The cavity had the following dimensions: 24-mm diam- The full multifrequency measurements 8f;, S»1, and.Sx;
eter and 7.41-mm height. The sapphire rod had 12.32-mm flir the full TMQF technique at all temperatures (from 25 to
ameter and 7.41-mm height. The geometric factors of the cav@§ K at an interval of 2 K) took approximately 20 h and 6 MB
were 27 628.07 (sidewalls) and 281.23 (endwalls). of hard-disk space to store the measurement data. The time re-
Fig. 6 presents computed coupling coefficients obtainepliired to perform measurements of thg , S»;, and Sz, pa-
using the full TMQF technique from multifrequency measureameters at 25 K anflz; measurements only for all other tem-
ments ofS;- andS».-parameters at frequency of 10 GHz angeratures was 12 h and 2 MB of hard-disk space. To carry out the
temperature range from 28 to 85 K. Fig. 7 shows@hefactor data processing for afi-parameters using the TMQF technique
values calculated using the TMQF and simplified methddr all temperatures took approximately 3 h, while the simpli-
presented in this paper. The maximum difference betwggn fied method required less than 1 h. Therefore, using the new
factor values calculated from both methods is 1%. The surfasehnique we were able to save about 8 h and 4 MB of hard-disk
resistance of the YBCO thin films under test calculated usirgpace for each test of HTS films pair without compromising the
the @, factors obtained using the accurate and the simplifietcuracy of results.
method is shown in Fig. 8. The agreement between both theThe verification procedure was repeated with the 10-GHz res-
methods is very good, and the differences between resultsoofator with a different set of YBCO films and bigger coupling
both methods are below 1.5%. This is considered very satisfaoefficients. Figs. 9 and 10 show measured coupling coefficient
tory taking into consideration the savings in measurement akdandks using the full TMQF technique and tlig, factors ob-
processing time. tained by both the methods at 10-GHz frequency for differing



2406 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 12, DECEMBER 2001

! T L 510° T T T T T
% Y | P ] s TMaF
: s ki : : : :
i | o simplified_TMQF
LA SR UG SOOI OO SN . S| @i : : : :
- 5 41077y A
c - © ‘8 : ‘ : i
3 A 8 - T
L2 15 ° : i ‘ ol . { ; 5 5 : :
t . - ..‘, ....... ........... ] o 310
2 A0S I g L
© o TN A
(=2 Ee) L ; ‘ :
£ I} 5 ioE i ; :
= g 210 ey
S @ e : :
Q o Y : ‘
O c : : i
=} s N i
110 R
a :
f:] B
H : I JE
H : : : : : i : P8
0.0 S E— 010° R DS B B DU P .
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90
Temperature (K) Temperature (K)

Fig. 11. Coupling coefficients at port(k,) and port 2(k-) as a function of Fig. 13. Calculated unloadeg factor using the TMQF and simplified TMQF
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Fig. 12. Coupling coefficients at port(%; ) and port 2k, ) as a function of Fig. 14. Calculate_d unloade&d factor using the TMQF and simplified TMQF
temperature at 25 GHz for sample #4. methods as a function of temperature at 25 GHz for sample #4.

simplified method was less than 0.8%. (Fig. 13) and 1% (Fig. 14) for the stronger and weaker cou-
plings, respectively.

B. Verification of the Simplified TMQF Technique Using
25-GHz Resonator VI. CONCLUSION

For verification of the simplified technique at a different fre- A simplified (TMQF) method has been developed for accu-
qguency (25 GHz), we have used a sapphire dielectric resonatate measurements and calculations of the unloa@géddctor
with sidewalls made of silver-plated copper and with YBCO swf dielectric resonators at varying temperatures. The measure-
perconducting thin-film endwalls. The cavity dimensions wemaents of sapphire resonators with high-temperature supercon-
9.5-mm diameter and 3-mm height, and the sapphire rod wascting end plates at 10 and 25 GHz in a temperature range from
5-mm diameter and 3-mm length. The geometric factors of t2& (14 K at 25 GHz) to 86 K and differing coupling resulted in
cavity were 22 326.5 (sidewalls) and 281.37 (endwalls). errors less than 1% as compared to the full TMQF. Hence, we

Figs. 11 and 12 show two sets of measured coupling coefn say that the accuracy of the simplified method is acceptable
ficients k; and ks, at 25 GHz for two separate measurementsnd can be applied for the accurate measurements of the surface
at differing temperatures. The corresponding unloa@dgdac- resistance of HTSs. The novel method allows for significant re-
tors calculated using the full TMQF technigue and the simplituction of number of measurements data, 40% decrease of mea-
fied technique are shown in Figs. 13 and 14, respectively. Teerement time, and 65% savings in computer memory used.
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